Abstract

The tensile and bending behavior of woven fabrics are among the most important characteristics in complex deformation analysis and modelling of textile fabrics and they govern many aesthetics and performance aspects such as wrinkle/buckle, hand and drape. In this paper, a numerical method for analyzing of the tensile and bending behavior of plain-woven fabric structure was developed. The formulated model is based on the first-order shear deformation theory (FSDT) for a four-node quadrilateral element (Q4) and a strain smoothing method in finite elements, referred as a cell-based smoothed finite element method (CS-FEM). The physical and low-stress mechanical parameters of the fabric were obtained through the fabric objective measurement technology (FOM) using the Kawabata evaluation system for fabrics (KES-FB). The results show that the applied numerical method provides higher efficiency in computation in terms of central processing unit (CPU) time than the conventional finite element method (FEM) because the evaluation of compatible strain fields of Q4 element in CS-FEM model is constants, and it was also appropriated for numerical modelling and simulation of mechanical deformation behavior such as tensile and bending of woven fabric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.