Abstract

Chordomas are aggressive bone tumors that often recur despite maximal resection and adjuvant radiation. To date there are no Food and Drug Administration (FDA)-approved chemotherapies. Computational drug repositioning is an expanding approach to identify pharmacotherapies for clinical trials. To identify FDA-approved compounds for repurposing in chordoma. Previously identified highly differentially expressed genes from chordoma tissue samples at our institution were compared with pharmacogenomic interactions in the Comparative Toxicogenomics Database (CTD) using ksRepo, a drug-repositioning platform. Compounds selected by ksRepo were then validated in CH22 and UM-Chor1 human chordoma cells in Vitro. A total of 13 chemical compounds were identified in silico from the CTD, and 6 were selected for preclinical validation in human chordoma cell lines based on their clinical relevance. Of these, 3 identified drugs are FDA-approved chemotherapies for other malignancies (cisplatin, cytarabine, and lucanthone). Cytarabine, a deoxyribonucleic acid polymerase inhibitor approved for the treatment of various leukemias, exhibited a significant concentration-dependent effect against CH22 and UM-Chor1 cells when compared to positive (THZ1) and negative (venetoclax) controls. Tretinoin exhibited a significant concentration-dependent cytotoxic effect in CH22, sacral chordoma-derived cell lines but to a much lesser extent in UM-Chor1, a cell line derived from skull base chordoma. Cytarabine administration reduces the viability of human chordoma cells. The equally effective reduction in viability seen with tretinoin seems to be cell line dependent. Based on our findings, we recommend the evaluation of cytarabine and tretinoin in an expanded set of human chordoma cell lines and animal models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call