Abstract

BackgroundFluoroquinolones are broad-spectrum antibiotics used to prevent and treat a wide range of bacterial infections. Plasmid-mediated qnr genes provide resistance to fluoroquinolones in many bacterial species and are increasingly encountered in clinical settings. Over the last decade, several families of qnr genes have been discovered and characterized, but their true prevalence and diversity still remain unclear. In particular, environmental and host-associated bacterial communities have been hypothesized to maintain a large and unknown collection of qnr genes that could be mobilized into pathogens.ResultsIn this study we used computational methods to screen genomes and metagenomes for novel qnr genes. In contrast to previous studies, we analyzed an almost 20-fold larger dataset comprising almost 13 terabases of sequence data. In total, 362,843 potential qnr gene fragments were identified, from which 611 putative qnr genes were reconstructed. These gene sequences included all previously described plasmid-mediated qnr gene families. Fifty-two of the 611 identified qnr genes were reconstructed from metagenomes, and 20 of these were previously undescribed. All of the novel qnr genes were assembled from metagenomes associated with aquatic environments. Nine of the novel genes were selected for validation, and six of the tested genes conferred consistently decreased susceptibility to ciprofloxacin when expressed in Escherichia coli.ConclusionsThe results presented in this study provide additional evidence for the ubiquitous presence of qnr genes in environmental microbial communities, expand the number of known qnr gene variants and further elucidate the diversity of this class of resistance genes. This study also strengthens the hypothesis that environmental bacterial communities act as sources of previously uncharacterized qnr genes.

Highlights

  • Fluoroquinolones are broad-spectrum antibiotics used to prevent and treat a wide range of bacterial infections

  • The abundance of qnr gene fragments in metagenomes ranged from 5.99 × 10−7 to 8.59 × 10−4, where the highest levels were found in samples from river and lake sediments contaminated with fluoroquinolones (Table 1)

  • A total of 52 (8.51%) full-length sequences were assembled from metagenomic data, out of which 20 were putatively novel qnr genes

Read more

Summary

Introduction

Fluoroquinolones are broad-spectrum antibiotics used to prevent and treat a wide range of bacterial infections. Plasmid-mediated qnr genes provide resistance to fluoroquinolones in many bacterial species and are increasingly encountered in clinical settings. Environmental and host-associated bacterial communities have been hypothesized to maintain a large and unknown collection of qnr genes that could be mobilized into pathogens. It is possible that these communities maintain a large collection of novel qnr genes that have not yet been transferred to, or discovered in, pathogenic bacteria. Describing this unknown diversity of qnr genes is important to fully understand their biological and ecological roles. It has the potential to uncover currently undescribed resistance genes that might appear in clinical settings in the future [18,19,20]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call