Abstract

AbstractControlling ultraviolet light at the nanoscale using optical Mie resonances holds great promise for a diverse set of applications, such as lithography, sterilization, and biospectroscopy. Access to the ultraviolet requires materials with a high refractive index and wide band gap energy. Here, the authors systematically search for such materials by computing the frequency‐dependent optical permittivity of 338 binary semiconductors and insulators from first principles, and evaluate their scattering properties using Mie theory. This analysis reveals several interesting candidate materials among which boron phosphide (BP) appears most promising. Then BP nanoparticles are prepared and it is demonstrated that they support Mie resonances at visible and ultraviolet wavelengths using both far‐field optical measurements and near‐field electron energy‐loss spectroscopy. A laser reshaping method is also presented to realize spherical Mie‐resonant BP nanoparticles. With a refractive index over three and low absorption losses in a broad spectral range spanning from the infrared to the near ultraviolet, BP is an appealing material for a broad range of applications in dielectric nanophotonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.