Abstract
Here we provide a literature review of all the methods reported to date for analyzing 2D pictures for diagnostic purposes. Pubmed was used to screen the MEDLINE database using MeSH (Medical Subject Heading) terms and keyworks. The different recognition steps and the main results were reported. All human studies involving 2D facial photographs used to diagnose one or several conditions in healthy populations or in patients were included. We included 1515 articles and 27 publications were finally retained. 67% of the articles aimed at diagnosing one particular syndrome versus healthy controls and 33% aimed at performing multi-class syndrome recognition. Data volume varied from 15 to 17,106 patient pictures. Manual or automatic landmarks were one of the most commonly used tools in order to extract morphological information from images, in 22/27 (81%) publications. Geometrical features were extracted from landmarks based on Procrustes superimposition in 4/27 (15%). Textural features were extracted in 19/27 (70%) publications. Features were then classified using machine learning methods in 89% of publications, while deep learning methods were used in 11%. Facial recognition tools were generally successful in identifying rare conditions in dysmorphic patients, with comparable or higher recognition accuracy than clinical experts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Stomatology, Oral and Maxillofacial Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.