Abstract
A two-photon fluorescent probe has become a critical tool in biology and medicine owing to its capability of imaging intact tissue for a long period of time, such as in two-photon fluorescence microscopy (TPM). In this context, a series of Salen-based zinc-ion bioimaging reagents that were designed based on an intramolecular charge-transfer mechanism were studied through the quantum-chemical method. The increase of one-photon absorption and fluorescence emission wavelength and the reduction of the oscillator strength upon coordination with a zinc ion reveal that they are fluorescent bioimaging reagents used for ratiometric detection. When the Salen ligand is incorporated with Zn(2+), the value of the two-photon absorption (TPA) cross-section (δmax) will decrease, and most of the ligands and complexes exhibit a TPA peak in the near-infrared spectral region. That is, a substituent at the end of the ligand can influence the luminescence property, besides increasing solubility. In addition, the effect of an end-substituted position on the TPA property was considered, such as ortho and meta substitution. The detailed investigations will provide a theoretical basis to synthesize zinc-ion-responsive two-photon fluorescent bioimaging reagents as powerful tools for TPM and biological detection in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.