Abstract
Two-dimensional (2D) halide perovskites are a class of materials in which 2D layers of perovskite are separated by large organic cations. Conventionally, the 2D perovskites incorporate organic cations as spacers, but these organic cations also offer a route to introduce specific functionality in the material. In this work, we demonstrate, by density functional theory calculations, that the introduction of electron withdrawing and electron donating molecules leads to the formation of localized states, either in the organic or the inorganic part. Furthermore, we show that the energy of the bands located in the organic and inorganic parts can be tuned independently. The organic cation levels can be tuned by changing the electron withdrawing/donating character, whereas the energy levels in the inorganic part can be modified by varying the number of inorganic perovskite layers. This opens a new window for the design of 2D perovskites with properties tuned for specific applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The journal of physical chemistry. C, Nanomaterials and interfaces
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.