Abstract

Previous work on the shock loading of metals, has shown that one-dimensional strain histories may be only be approximated in a loaded sample if it is to be recovered at late times to examine microstructure. This proceeds through the use of a system of partial momentum traps and soft, shock-recovery techniques. However, limitations in the degree of uniaxial loading, and on the trapping of tensile pulses, have led to redesign of the target. In the current paper the technique is first assessed, and then modifications are explored to further refine it. Additionally it is illustrated how it may be applied to successfully recover targets of lower innate fracture toughness than has been previously documented. In the first part of the paper, the authors review work undergone to shock recover metals, and highlight associated constraints. In the latter part of the paper, a series of hydrocode simulations is presented to illustrate the design of an improved shock recovery technique that has now been adopted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.