Abstract

Inspired by the active-site structure of the [NiFe] hydrogenase, we have computationally designed the iron complex [P(tBu) 2 N(tBu) 2 )Fe(CN)2 CO] by using an experimentally ready-made diphosphine ligand with pendant amines for the hydrogenation of CO2 to methanol. Density functional theory calculations indicate that the rate-determining step in the whole catalytic reaction is the direct hydride transfer from the Fe center to the carbon atom in the formic acid with a total free energy barrier of 28.4 kcal mol(-1) in aqueous solution. Such a barrier indicates that the designed iron complex is a promising low-cost catalyst for the formation of methanol from CO2 and H2 under mild conditions. The key role of the diphosphine ligand with pendent amine groups in the reaction is the assistance of the cleavage of H2 by forming a Fe-H(δ-) ⋅⋅⋅H(δ+) -N dihydrogen bond in a fashion of frustrated Lewis pairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.