Abstract

Due to the many economic consequences and technological problems caused by the corrosion process, its inhibition is one of the most important aspects of ongoing research. Computer methods, i.e., density functional theory (DFT) methods, are of great importance to the large-scale research being conducted which allows the evaluation of the corrosion inhibition performance without conducting time-consuming, long-term and expensive experimental measurements. In this study, new corrosion inhibitors were designed in three corrosion environments on the basis of their HOMO and LUMO orbital energies—the energy difference between them and their dipole moment. In addition, their interactions with the Fe and Cu surface were modelled on the basis of the number of electrons transferred during the formation of the protective adsorption layer (ΔN) and the initial energy between inhibitor molecule and protected metal surface (Δψ). The obtained results indicate that, among the aliphatic investigated Schiff bases, the N-methylpropan-1-imine (N-MP(1)I) molecule would theoretically have the highest corrosion inhibition efficiency mainly due to its high EHOMO value, relatively low ELUMO value, high chemical reactivity and high polarity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.