Abstract

The majority of hepatocellular carcinoma cases are caused by infection with hepatitis B (HBV) or C (HCV) viruses. CTNNB1 is the most mutated oncogene in HBV- and HCV-associated tumors. CTNNB1 mutations can lead to β-catenin accumulation, resulting in tumor progression. Small interfering RNAs (siRNAs) can be used to silence CTNNB1 mRNA. After prediction and evaluation, four siRNAs were found to have the highest silencing potential. All four siRNAs had an acceptable GC content, no palindromic sequences, no off-targets, were thermostable, and had accessible target sites. Molecular docking of the siRNAs to Argonaute 2 demonstrated favorable docking scores within the binding pocket for three siRNAs. Molecular dynamics simulations and binding energy calculations demonstrated that the siRNAs steadily remained in the binding pocket. In this study, three siRNAs were successfully designed to silence oncogenic CTNNB1 mRNA as a therapeutic strategy against hepatocellular carcinoma and warrant further in vitro and in vivo validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.