Abstract

Feature selection is a preprocessing step in machine learning that aims to reduce dimensionality and improve performance. The approaches for feature selection are often classified according to the evaluation of a subset of features as filter, wrapper, and embedded approaches. The high performance of wrapper approaches for feature selection is associated at the same time with the disadvantage of high computational cost. Cost-reduction mechanisms for feature selection have been proposed in the literature, where competitive performance is achieved more efficiently. This work applies the simple and effective resource-saving mechanisms of the fixed and incremental sampling fraction strategies with memory to avoid repeated evaluations in multi-objective permutational-based differential evolution for feature selection. The selected multi-objective approach is an extension of the DE-FSPM algorithm with the selection mechanism of the GDE3 algorithm. The results showed high resource savings, especially in computational time and the number of evaluations required for the search process. Nonetheless, it was also detected that the algorithm’s performance was diminished. Therefore, the results reported in the literature on the effectiveness of the strategies for cost reduction in single-objective feature selection were only partially sustained in multi-objective feature selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.