Abstract
Recent models of natural language processing employ statistical reasoning for dealing with the ambiguity of formal grammars. In this approach, statistics, concerning the various linguistic phenomena of interest, are gathered from actual linguistic data and used to estimate the probabilities of the various entities that are generated by a given grammar, e.g., derivations, parse-trees and sentences. The extension of grammars with probabilities makes it possible to state ambiguity resolution as a constrained optimization formula, which aims at maximizing the probability of some entity that the grammar generates given the input (e.g., maximum probability parse-tree given some input sentence). The implementation of these optimization formulae in efficient algorithms, however, does not always proceed smoothly. In this paper, we address the computational complexity of ambiguity resolution under various kinds of probabilistic models. We provide proofs that some, frequently occurring problems of ambiguity resolution are NP-complete. These problems are encountered in various applications, e.g., language understanding for text- and speech-based applications. Assuming the common model of computation, this result implies that, for many existing probabilistic models it is not possible to devise tractable algorithms for solving these optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.