Abstract
Previous numerical studies based on 2D coronary artery bypass graft (CABG) model for the optimization of anastomosis configuration has indicated that large graft-host diameter ratio and small junction angle has better hemodynamics. The validity of representing a 3D CABG model with a 2D CABG model is not clear. Four different 3D CABG models and one 2D CABG model were constructed, and their hemodynamics were analyzed and compared in the present study in order to verify this validity. Hemodynamics of the five CABG models were numerically simulated using commercial software ANSYS 9.0. The results showed that the distribution of flow patterns, wall shear stresses and wall shear stress gradients in the 2D model and 3D models were not significantly different. Large or same diameter of graft compared with that of the parent artery, and small suture angle is profitable in clinical application from the point of view of hemodynamics. It can be concluded that the conclusions drawn from the optimization of 2D CABG model is credible and can be used for reference; it is feasible to simplify a 3D CABG model to a 2D model for hemodynamics analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.