Abstract

BackgroundLateral hinge fracture (LHF) is associated with nonunion and plate breakage in high tibial osteotomy (HTO). Mechanical studies investigating fixation strategies for LHFs to restore stability and avoid plate breakage are absent. This study used computer simulation to compare mechanical stabilities in HTO for different LHFs fixed with medial and bilateral locking plates.MethodsA finite element knee model was created with HTO and three types of LHF, namely T1, T2, and T3 fractures, based on the Takeuchi classification. Either medial plating or bilateral plating was used to fix the HTO with LHFs. Furthermore, the significance of the locking screw at the combi hole (D-hole) of the medial TomoFix plate was evaluated.ResultsThe osteotomy gap shortening distance increased from 0.53 to 0.76, 0.79, and 0.72 mm after T1, T2, and T3 LHFs, respectively, with medial plating only. Bilateral plating could efficiently restore stability and maintain the osteotomy gap. Furthermore, using the D-hole screw reduced the peak stress on the medial plate by 28.7% (from 495 to 353 MPa), 26.6% (from 470 to 345 MPa), and 32.6% (from 454 to 306 MPa) in T1, T2, and T3 LHFs, respectively.ConclusionBilateral plating is a recommended strategy to restore HTO stability in LHFs. Furthermore, using a D-hole locking screw is strongly recommended to reduce the stress on the medial plate for lowering plate breakage risk.

Highlights

  • High tibial osteotomy (HTO) with a locking plate is a well-established surgical approach to adjust the mechanical axis of the low extremity with medial compartmental knee osteoarthritis (KOA) and restore the joint space of the medial knee of the KOA [1,2,3]

  • type 1 (T1) fracture referred to a crack, parallel to the osteotomy line of the open wedge, in the open wedge extending to the proximal site of the tibiofibular joint

  • Using high tibial osteotomy (HTO) for medial compartmental KOA is currently popular because the locking plate and screws can provide excellent stability immediately after osteotomy, enabling the patient to start rehabilitation programs earlier than with the use of the traditional compression plate

Read more

Summary

Introduction

High tibial osteotomy (HTO) with a locking plate is a well-established surgical approach to adjust the mechanical axis of the low extremity with medial compartmental knee osteoarthritis (KOA) and restore the joint space of the medial knee of the KOA [1,2,3]. HTO has gained popularity because of its satisfactory clinical outcome, in patients aged 40–60 years [4,5,6]. To ensure the bone healing of the medial open wedge after HTO, stable fixation is required, and recently, the locking plate has been shown to provide excellent stability for early rehabilitation exercise [8, 9]. Lateral hinge fracture (LHF) is associated with nonunion and plate breakage in high tibial osteotomy (HTO). Mechanical studies investigating fixation strategies for LHFs to restore stability and avoid plate breakage are absent. This study used computer simulation to compare mechanical stabilities in HTO for different LHFs fixed with medial and bilateral locking plates

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.