Abstract

We present a synergetic effort of a group of theorists to characterize a molecular electronics device through a multiscale modeling approach. We combine electronic-structure calculations with molecular dynamics and Monte Carlo simulations to predict the structure of self-assembled molecular monolayers on a metal surface. We also develop a novel insight into molecular conductance, with a particular resolution of its fundamental channels, which stresses the importance of a complete molecular structure description of all components of the system, including the leads, the molecule, and their contacts. Both molecular dynamics and electron transport simulations imply that knowledge of detailed molecular structure and system geometry are critical for successful comparison with carefully performed experiments. We illustrate our findings with benzenedithiolate molecules in contact with gold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.