Abstract

The utility of a range of computational chemistry approaches for the prediction of the regioselectivity for hydroformylation processes and metal-ligand dissociation in a model organometallic system is considered to provide insight about computational strategies for use in catalysis. The hydroformylation reactions investigated are the Rh-catalyzed hydroformylation of terminal alkenes with triarylphosphine and chelating diphosphine ligands. As well, the dissociation of water from a Pt complex is considered to probe method effects on metal-ligand bonding. Several density functional theory (DFT) approaches and ab initio methods are considered. We demonstrate that the quality of the basis set selected for the calculations can play a vital role in the prediction of even the product distribution, and that correcting for basis set superposition error (BSSE) can be very important. As well, the study demonstrates a broad range of predictions achievable using a variety of DFT approaches, which is, as discussed, a manifestation of the challenges that are encountered for calculations involving transition metal molecular species, illustrating the critical need to gauge computational chemistry methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.