Abstract

The essence of real-time hybrid simulation (RTHS) is its ability to combine the benefits ofphysical testing with those of computational simulations. Therefore, an understanding of the real-timecomputational issues and challenges is important, especially for RTHS of large systems, in advancingthe state of the art. To this end, RTHS of a 40-story (plus 4 basement stories) tall building havingnonlinear energy dissipation devices for mitigation of multiple natural hazards, including earthquakeand wind events, were conducted at the NHERI Lehigh Experimental Facility. An efficient implementationprocedure of the recently proposed explicit modified KR-a (MKR-a) method was developedfor performing the RTHS. This paper discusses this implementation procedure and the real-time computationalissues and challenges with regard to this implementation procedure. Some results from theRTHS involving earthquake loading are presented to highlight the need for and application of RTHSin performance based design of tall buildings under earthquake hazard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.