Abstract

To assess if finite element (FE) models can be used to predict deformation of the femoropopliteal segment during knee flexion. Magnetic resonance angiography (MRA) images were acquired on the lower limbs of 8 healthy volunteers (5 men; mean age 28 ± 4 years). Images were taken in 2 natural positions, with the lower limb fully extended and with the knee bent at ~ 40°. Patient-specific FE models were developed and used to simulate the experimental situation. The displacements of the artery during knee bending as predicted by the numerical model were compared to the corresponding positions measured on the MRA images. The numerical predictions showed a good overall agreement between the calculated displacements of the motion measures from MRA images. The average position error comparing the calculated vs. actual displacements of the femoropopliteal intersection measured on the MRA was 8 ± 4 mm. Two of the 8 subjects showed large prediction errors (average 13 ± 5 mm); these 2 volunteers were the tallest subjects involved in the study and had a low body mass index (20.5 kg/m²). The present computational model is able to capture the gross mechanical environment of the femoropopliteal intersection during knee bending and provide a better understanding of the complex biomechanical behavior. However, results suggest that patient-specific mechanical properties and detailed muscle modeling are required to provide accurate patient-specific numerical predictions of arterial displacement. Further adaptation of this model is expected to provide an improved ability to predict the multiaxial deformation of this arterial segment during leg movements and to optimize future stent designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.