Abstract
In this article, we derive computational bases for Raviart–Thomas (RT) and Brezzi–Douglas–Marini (BDM) (vector) approximation spaces on a triangulation of a domain in R2. The basis functions, defined on the reference triangle, have a Lagrangian property. The continuity of the normal component of the approximation across the edges in the triangulation is satisfied by the use of the Piola transformation and the Lagrangian property of the basis functions. A numerical example is given demonstrating the approximation property of the bases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.