Abstract
A multiwalled carbon nanotube-modified carbon paste electrode (MWCNT-PE) was used for determination of 1,4-diazabicyclo[2,2,2]octane (DABCO or TEDA) in 0.1 M phosphate buffer solutions (pH 10.25). Cyclic voltammetry(CV) and differential pulse voltammetry (DPV) techniques were used to investigate the electrocatalytic oxidation of DABCO at the surface of modified electrode. The results shown that the oxidation peak current of DABCO at the surface of MWCNT-PE was 2.40 times larger than that at the bare electrode. The experimental formal redox potential (E°') of DABCO was obtained 986 mV versus SHE (Standard Hydrogen Electrode). Density functional theory (DFT) method at B3LYP/6-311++G** level of theory and a conductor-like Polarizable Continuum Model (CPCM) was used to calculate the E°' values. The highest occupied molecular orbital (E HOMO), lowest unoccupied molecular orbital (E LUMO) and some thermodynamic parameters such as Gibbs free energy of DABCO and its oxidation forms were calculated. Both direct and indirect methods were used to calculate the theoretical standard electrode potential for DABCO and the results were found to be in good agreement with the experimental values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.