Abstract

In this work, the flow of a modified nanofluid is analysed as it passes over a moving surface to investigate the influence of nonlinear radiative heat transfer and the effects of magnetic fields that are aligned. In addition, ethylene glycol is used as the solvent while zirconium oxide and alumina are combined to generate a hybrid nanomaterial. Ternary nanomaterials consist of zirconium oxide, alumina, and copper dissolved in the ethylene glycol. For this mathematical model, Navier–Stokes equations were used to represent the assumed flow. The Navier–Stokes equations were approximated using the boundary layer method under the flow assumptions, yielding the PDE’s. Similarity transformations are used to translate this system into ODE’s. The bvp4c method is used to explain a dimensionless system. The impacts of the relevant physical parameters are elucidated quantitatively and visually. A greater temperature ratio parameter is observed to increase the temperature profile. In addition to this, when the magnetic field parameter is increased, the momentum layer becomes thicker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.