Abstract

Ballistic impact on a polyurea retrofitted high strength structural steel plate is simulated and validated. A soft material model for polyurea, which is capable of capturing complex mechanical behavior characterized by large strains, hysteresis, rate sensitivity, stress softening (Mullins effect), and deviatoric and volumetric plasticity, is calibrated against several uniaxial tension experiments and a three-dimensional release wave experiment to capture both the material point and bulk behaviors. A porous plasticity model is employed to model the high strength structural steel and localization elements are included to capture adiabatic shear bands and strain localization. The computational capabilities of these models are demonstrated by the prediction of the target plate displacement, which shows excellent agreement with experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.