Abstract

We computationally proved that the planar aromatic hexagonal isomer N3P3 with the alteration of N and P is the second most stable structure for the N3P3 stoichiometry. We found that the aromatic isomer has high barriers for transition into the global minimum structure or into the three isolated NP molecules, making this structure kinetically stable. We showed that the sandwich N3P3CrN3P3 molecule corresponds to a minimum on the potential energy surface; thus, the aromatic N3P3 molecule has a potential to be a new ligand in chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.