Abstract

The refinement of tetrahedral meshes is a significant task in many numerical and discretizations methods. The computational aspects for implementing refinement of meshes with complex geometry need to be carefully considered in order to have real-time and optimal results. In this paper we study some computational aspects of a class of tetrahedral refinement algorithms. For local adaptive refinement we give numerical results of the computational propagation cost of a general class of longest edge based refinement and show the implications of the geometry in the global process. Moreover we study the conformity process based on the longest edge bisection and give an algorithm and data structure to efficiently handle tetrahedral refinement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.