Abstract

The computational efficiencies of the continuum and consistent (algorithmic) tangent moduli tensors in rate-independent crystal elastoplasticity are examined in conjunction with the available implicit state update algorithms. It is, in this context, shown that the consistent tangent moduli associated with the state update algorithm with the exponential mapping coincide with the continuum tangent moduli. After verifying the reported performance of the exponential mapping algorithm in preserving the incompressibility of plastic deformation in a single crystal grain, we carry out numerical experiments to understand the convergence trends of the global Newton–Raphson iterative procedure with different kinds of tangent moduli tensors. Having done this, we are concerned with the performance of those tangent moduli tensors for the micro-scale analysis of a polycrystalline aggregate, which is regarded as a representative volume element, subjected to macro-scale uniform deformation in the context of the two-scale homogenization method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.