Abstract

Many problems in science, engineering, and finance require the information on the first passage time (FPT) of a stochastic process. Mathematically, such problems are often reduced to the evaluation of the probability density of the time for such a process to cross a certain level, a boundary, or to enter a certain region. While in other areas of applications the FPT problem can often be solved analytically, in finance we usually have to resort to the application of numerical procedures, in particular when we deal with jump-diffusion stochastic processes (JDP). In this paper, we propose a Monte-Carlo-based methodology for the solution of the FPT problem in the context of multivariate (and correlated) JDPs. The developed technique provides an efficient tool for a number of applications, including credit risk and option pricing. We demonstrate its applicability to the analysis of default rates and default correlations of several different, but correlated firms via a set of empirical data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.