Abstract
The Burnside ring \(\mathcal {B}(G)\) of a finite group G, a classical tool in group theory and representation theory, is studied from the point of view of computational commutative algebra. Starting from a table of marks, we describe efficient algorithms for computing a presentation, the image of the mark homomorphism, the prime ideals and the prime ideal graph, the singular locus, the conductor in its integral closure, the connected components of its spectrum, and its idempotents. On the way, we provide methods for identifying p-residual subgroups, direct products of subgroups of coprime order, commutator subgroups, and perfect subgroups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.