Abstract

Metal-organic frameworks (MOFs) with coordinatively unsaturated sites (CUS) offer interesting possibilities for tuning the affinity of these materials towards certain adsorbates, potentially increasing their selectivity and storage capacity. From a modelling point of view, however, they pose a significant challenge due to the inability of conventional force-fields for dealing with these specific interactions. In this paper, we review recent developments in the application of quantum-mechanical (QM) methods and classical molecular simulations to understand and predict adsorption in MOFs with CUS. We find that hybrid approaches that incorporate QM-based information into classical models are able to provide dramatically improved adsorption predictions relative to conventional force-fields, while yielding a realistic description of the adsorption mechanism in these materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.