Abstract

Transcriptome-integrated human genome-scale metabolic models (GEMs) have been used widely to assess alterations in metabolism in response to disease. Transcriptome integration leads to identification of metabolic reactions that are differentially inactivated in the tissue of interest. Among the methods available for mapping transcriptome data on GEMs, we focus here on an Integrative Metabolic Analysis Tool (iMAT), which we have recently applied to the analysis of Alzheimer's disease (AD). We provide a detailed protocol for applying iMAT to create models of personalized metabolic networks, which can be further processed to identify reactions associated with abnormal metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call