Abstract

In this paper, we show that the combination of NMR theoretical and experimental results can help to solve the molecular structure of peptides, here it is used as an example the residue Leucine-67 in Desulfovibrio vulgaris flavodoxin. We apply a computational protocol based on the leucine amino acid dipeptide, which, using calculated and experimental spin-spin coupling constants, allows us to obtain the conformation of the amino acid side chain. Calculated results show that the best agreement is obtained when three conformers around the lateral chain angle $\chi _1$ are considered or when the dynamic effect in the torsional angles is included. The population of each structure is estimated and analyzed according to the correlation between those two approaches. Independently of the approach, the estimated $\chi _1$ angle in solution is close to the staggered value of -60$^\circ $ and deviates significantly from the average x-ray angle of -90$^\circ $.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.