Abstract

Engineering biological systems that are capable of overproducing products of interest is the ultimate goal of any biotechnology application. To this end, stoichiometric (or steady state) and kinetic models are increasingly becoming available for a variety of organisms including prokaryotes, eukaryotes, and microbial communities. This ever-accelerating pace of such model reconstructions has also spurred the development of optimization-based strain design techniques. This chapter highlights a number of such frameworks developed in recent years in order to generate testable hypotheses (in terms of genetic interventions), thus addressing the challenges in metabolic engineering. In particular, three major methods are covered in detail including two methods for designing strains (i.e., one stoichiometric model-based and the other by integrating kinetic information into a stoichiometric model) and one method for analyzing microbial communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.