Abstract

In this paper, we propose computational approaches for the zero forcing problem, the connected zero forcing problem, and the problem of forcing a graph within a specified number of timesteps. Our approaches are based on a combination of integer programming models and combinatorial algorithms, and include formulations for zero forcing as a dynamic process, and as a set-covering problem. We explore several solution strategies for these models, test them on various types of graphs, and show that they are competitive with the state-of-the-art algorithm for zero forcing. Our proposed algorithms for connected zero forcing and for controlling the number of zero forcing timesteps are the first general-purpose computational methods for these problems, and are superior to brute force computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call