Abstract

The micro-geometry of the tooth surfaces of spiral bevel and hypoid pinions has to be fine-adjusted to obtain enhanced meshing and contact characteristics during the meshing process with their corresponding mating gears. In this paper, a new methodology is proposed to design face-milled spiral bevel gear drives to, firstly, derive favorable orientation and dimensions of the contact pattern between the mating surfaces of the gears and, secondly, obtain a predesigned parabolic function of negative transmission errors with limited magnitude of maximum transmission errors. The proposed approach is based on the definition of the desired topography for the active surfaces of the pinion followed by a numerical derivation of their finishing machine-tool settings through a bound-constrained optimization algorithm. Increasing mechanical strength and reducing the levels of noise and vibration of face-milled spiral bevel gear drives constitute the main objectives of the proposed design process. A numerical example is provided to illustrate the applicability of the developed theory .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call