Abstract

BackgroundMany studies report about detection and functional characterization of cis-regulatory motifs in untranslated regions (UTRs) of mRNAs but little is known about the nature and functional role of their distribution. To address this issue we have developed a computational approach based on the use of data mining techniques. The idea is that of mining frequent combinations of translation regulatory motifs, since their significant co-occurrences could reveal functional relationships important for the post-transcriptional control of gene expression. The experimentation has been focused on targeted mitochondrial transcripts to elucidate the role of translational control in mitochondrial biogenesis and function.ResultsThe analysis is based on a two-stepped procedure using a sequential pattern mining algorithm. The first step searches for frequent patterns (FPs) of motifs without taking into account their spatial displacement. In the second step, frequent sequential patterns (FSPs) of spaced motifs are generated by taking into account the conservation of spacers between each ordered pair of co-occurring motifs. The algorithm makes no assumption on the relation among motifs and on the number of motifs involved in a pattern. Different FSPs can be found depending on different combinations of two parameters, i.e. the threshold of the minimum percentage of sequences supporting the pattern, and the granularity of spacer discretization. Results can be retrieved at the UTRminer web site: . The discovered FPs of motifs amount to 216 in the overall dataset and to 140 in the human subset. For each FP, the system provides information on the discovered FSPs, if any. A variety of search options help users in browsing the web resource. The list of sequence IDs supporting each pattern can be used for the retrieval of information from the UTRminer database.ConclusionComputational prediction of structural properties of regulatory sequences is not trivial. The presented data mining approach is able to overcome some limits observed in other competitive tools. Preliminary results on UTR sequences from nuclear transcripts targeting mitochondria are promising and lead us to be confident on the effectiveness of the approach for future developments.

Highlights

  • Many studies report about detection and functional characterization of cis-regulatory motifs in untranslated regions (UTRs) of mRNAs but little is known about the nature and functional role of their distribution

  • We report and discuss: i) nature and distribution of translation regulatory motifs in the sample under investigation; ii) the results obtained on these annotations by the twostepped data mining approach; iii) few examples of interesting structural features of UTR regulatory motifs

  • UTR regulatory motif annotation: an overview of the mitochondrial dataset Mapping regulatory motifs along the UTR sequences under investigation was done by searching for 46 motif patterns collected in the UTRsite database

Read more

Summary

Introduction

Many studies report about detection and functional characterization of cis-regulatory motifs in untranslated regions (UTRs) of mRNAs but little is known about the nature and functional role of their distribution. To address this issue we have developed a computational approach based on the use of data mining techniques. The huge amount of data recently produced by genome sequencing projects has allowed to highlight information on the genetic content of many organisms in the form of lists of all genes they can express Necessary, this knowledge is not sufficient to understand mechanisms ruling cell growth, differentiation, development and many other events underlying life. Authors report that distances among target sites are important for their activity [3]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.