Abstract
In recent years, halogen-bonded complexes (XBCs), in solution, have played a pivotal role in inducing photochemical organic reactions. In this work, we explore the ability of various tertiary amines to act as XB acceptors in the presence of the XB donor CBr4 by computational and spectroscopic studies. DFT studies clearly showcase the formation of XBCs between the studied tertiary amines and CBr4. Simultaneously, computational and experimental UV-Vis studies display intense red shifts that are consistent with charge transfer observed from tertiary amines to CBr4. A detailed NMR study revealed a clear chemical shift of the carbon carrying the bromine atoms upon mixing the XB acceptor with the donor, suggesting that this spectroscopic technique is indeed an experimental tool to identify the generation of XBCs. An application of the ability of such XBCs to activate a carboxylic acid under UVA irradiation or sunlight is presented for amino acid coupling. Among the various tertiary amines studied, the pair DABCO-CBr4 was found to work well for the photochemical amide bond formation. Direct infusion-HRMS studies allowed us to propose a general mechanism for the photochemical amino acid coupling in the presence of a tertiary amine and CBr4, initiated by the photoactivation of an XBC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.