Abstract

Aiming to combine the advantages of both prompt fluorescence and thermally activated delayed fluorescence in single emitter, molecular design of emitters with hybridized locally excited and charge transfer states were investigated by computational approaches and optical spectroscopy. Taking into account the results of the theoretical screening, the most promising derivatives of 9,9-dimethyl-9,10-dihydroacridine and 10-phenyl-10H-phenothiazine-5,5-dioxide based with the different linking topology (meta- and para-isomers) were selected for the synthesis and experimental investigations. Both the compounds exhibit ultraviolet LE emission peaking at ca. 360 nm, green ICT peaking at ca. 510 nm, and deep-blue HLCT emission peaking at ca. 430 nm when they are molecularly dispersed in the solid media of the different polarity. The developed emitters allow to obtain deep-blue electroluminescence for the host-containing OLEDs and green electroluminescence of host-free devices with the efficiency of exciton production of 42 and 73%, respectively. Efficient exciton production is due to the spin-flip switching via thermally activated processes which is much more efficient than prompt fluorescence. Showing the impact of the linking topology, the para-isomer demonstrated more efficient triplet harvesting in OLEDs than meta-isomer. A detailed discussion on the structure–property relationships and on some discrepancies between the results of the results of theoretical calculations and spectral analysis allows to obtain important insights on the photophysical properties of these compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call