Abstract

Operation of shaped charges with copper hemispherical liners of degressive (decreasing from top to bottom) thickness is experimentally studied. The velocity of the head of generated shaped-charge jets is determined along with how deep they penetrate a type-setting target made of steel disks and the sizes of holes made in the disks. The experimental data on an increase in the velocity and a decrease in the mass of the heads of shaped-charge jets, which occur with an increase in the difference in the thicknesses of the hemispherical liner at the apex and at the base are in good agreement with the results of numerical simulation carried out within the framework of a two-dimensional axisymmetric problem of continuous mechanics. According to the experimental results, the effect of technological manufacturing errors on the operation of these charges becomes stronger, which eliminates or significantly limits the increase in the penetrating action. In one of the versions of liners of degressive thickness, the depth of penetration of a target, which is average in two tests, increases by 7.5% as compared to the liner of constant thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.