Abstract

Rapid global urbanization and high-salinity wastewater disposal from industrial activities have exerted significant pressure on water resources. Over the past few years, temperature swing solvent extraction (TSSE) has been identified as a promising technique to desalinate hypersaline brines. Despite its potential, the TSSE desalination literature has been mainly based on empirical insights, and the limited molecular simulation studies have primarily focused on NaCl brines. Herein, we use molecular dynamics (MD) simulations to study the TSSE desalination of four different brines, namely, KCl, KBr, NaCl, and NaBr using diisopropylamine as the solvent. Based on both bulk and interfacial brine-diisopropylamine MD results, we investigate the qualitative and quantitative performance of the simulations by benchmarking these results against our experimental evaluations of these same systems. MD results provide satisfactory qualitative agreement with the experimental data of water solubilization in the organic phase and amine solubilization in the aqueous phase for the KBr, KCl, and NaBr brines. Also, the molecular mechanism of solvation of ionic species by water molecules over diisopropylamine suggested by the MD simulations is in agreement with our experimental data. However, larger qualitative and quantitative deviations were observed for the NaCl brines, and this is likely due to polarization and charge transfer effects, as quantified by our quantum chemical calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call