Abstract

This paper discusses the design of a square parachute based on classical approach, computational analysis and experimentation. This parachute will be used to drop directional sonobuoy on the sea to locate and classify the submarines. Design improvements are brought out by providing slits into a solid square canopy of parachute to bring in more stability and minimum drift during descend. Specifically, the effect of upstream sonobuoy, RANS model, suspension line length, canopy size and slit size in flow structure were considered. The predicted drag coefficients obtained from CFD for square canopy with slit-cuts compared with the results of wind tunnel experiment and found that the increase in the suspension-line length and/or of the surface area of the parachute canopy helps in better stability and results in the minimum drag loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.