Abstract

In this work, we study the interplay between chaos and noise in neuronal state transitions involving period doubling cascades. Our approach involves the implementation of a neuronal mathematical model under the action of neuromodulatory input, with and without noise, as well as equivalent experimental work on a biological neuron in the stomatogastric ganglion of the crab Cancer borealis. Our simulations show typical transitions between tonic and bursting regimes that are mediated by chaos and period doubling cascades. While this transition is less evident when intrinsic noise is present in the model, the noisy computational output displays features akin to our experimental results. The differences and similarities observed in the computational and experimental approaches are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.