Abstract
Large-scale three-dimensional numerical simulations using the finite-difference time domain technique are used to compute the continuous wave fields associated with a composite transducer. The interior of the transducer is made of a periodic array of square rods. This lattice causes elastic wave Bragg diffraction similar to electrons in a periodic lattice. A low frequency mode shape is assumed for the rods. This prescribed motion includes longitudinal and transverse components. It is shown that the transverse motion in the rod gives rise to shear waves causing standing waves (lateral resonances) in the polymer regions. This is also confirmed by experimental results presented here and other independent analytical and experimental work. The full-scale numerical simulation is performed on a large parallel supercomputer and permits modeling of not only the composite transducer but the radiated pressure from near to far field. In addition, cover plates and edge effects are included, unlike analytical treatments. Although only mechanical effects are included, the wave propagation approach captures many essential features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.