Abstract

The experimental data and the results of direct numerical simulation of the flow developed in a constant-cross-section tube in passage of a shock wave through a three-layer gas system are presented. The three-layer systemis formed as a result ofmounting two thin films in the tube and filling the space between them with gases of different densities. The first interface (thin film) makes an angle of 45◦ with the shock front and the second interface is located in parallel to the front. The shock wave is formed at the left tube end and moves towards the first interface at the Mach number M = 2.4. The results of simulation of the problem are compared with the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call