Abstract

A wide variety of pathologies, such as store-induced limit-cycle oscillations, have been observed on high-performance aircraft and have been attributed to transient nonlinear aeroelastic effects. Ignoring the nonlinearity of the structure or the aerodynamics will lead to inaccurate prediction of these nonlinear aeroelastic phenomena. The current paper presents the development and representative results of a high-fidelity multidisciplinary analysis tool that accurately predicts limit-cycle oscillations (LCOs) of an aeroelastic system with combined structural and aerodynamic nonlinearities. Wind-tunnel measurements have been carried out to validate the findings of the investigation. The current investigation concentrates on the prediction of the critical physical terms that dominate the mechanism of LCO. The aeroelastic computations predict LCO amplitudes and frequencies in very close agreement with the experimental data. The results emphasize the importance of modeling the nonlinearities of both the fluid and structure for the accurate prediction of LCO for nonlinear aeroelastic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.