Abstract
New and ever more demanding applications of microelectronics require advances in design and optimization of components and packages, in relatively short periods of time, while satisfying electrical, thermal, and mechanical specifications, as well as cost and manufacturability expectations, without compromise to reliability and durability. Therefore, time efficient methodologies for detecting, locating and sizing damage early in the product development process are required. In this paper, a novel hybrid methodology, based on a combined use of recent advances in optics and computational modeling, is described and its application is demonstrated by a case study of a microelectronic component subjected to cyclic electro‐thermo‐mechanical loadings. Using the hybrid, optical‐computational approach, displacements and deformations are determined with high spatial resolution and measurement accuracy and provide indispensable data for development, optimization, and thermal management in microelectronics and packaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.