Abstract
Objective: This study aimed to assess the anti-rheumatic potential of Dodonaea viscosa and to evaluate its bioactive small molecules for their beneficial effects in the management of rheumatoid arthritis. Methods: In vitro bioactivity assays were performed to assess the healing potential of D. viscosa and statistical analysis was performed by using the linear regression technique. In silico analysis was performed to identify the key inhibitors of the disease to target TNF-α. The plant extract was prepared using ethanol solvent via the Soxhlet method. Phytochemical and bioactivity testing was performed. Gas chromatography-mass spectrometry (GC-MS) analysis was conducted for bioactive plant compounds. Disease-specific target was shortlisted by HUB gene analysis. Molecular docking and molecular dynamic simulations were run for validation of the results. Results: Phytochemical studies verified the presence of phenols, flavonoids, steroids, sterols, saponins, coumarins, tannins, and terpenoids. The significant antioxidant potential of plant extract was evaluated by the DPPH and Ferric Reducing Antioxidant Power (FRAP) assays, while the anti-inflammatory potential was evaluated by the protein denaturation and Human Red Blood Cell (HRBC) membrane stabilization assays. In silico studies revealed that nine of the 480 compounds found in D. viscosa (ethanol extract) had drug-like properties. Tumor necrosis factor alpha (TNF-α) was selected as a key disease gene through HUB gene analysis. Results of molecular docking and MD simulation analysis demonstrated that 4-(1-hydroxy-3-oxo-1H-isoindol-2-yl) benzoic acid (PubChemID 18873897), had the best binding affinity with TNF-α amongst all nine compounds. Conclusion: 4-(1-hydroxy-3-oxo-1H-isoindol-2-yl) benzoic acid (PubChemID 18873897), have the potential to be a good small molecule inhibitor of TNF-α against rheumatoid arthritis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.