Abstract

Abstract Three-dimensional computational fluid dynamics models are developed to understand physical principles of self-reacting friction stir welding process. A novel approach of predicting the weld microstructure based on plastic strain distribution at cross-section behind the tool is proposed and verified with experimental results. Limitations and credibility of shear stress and velocity tool/workpiece boundary condition are evaluated from the perspective of the weld formation mechanism. The importance of the shear layer and its sticking/sliding transition state in weld formation mechanism is emphasized. From modeling perspective, shear stress boundary, which only represents a sliding condition, neglects the movement and effects of this shear layer. When shear layer is formed, due to the velocity discontinuity which could not be captured in fluid model, velocity boundary condition, which represents an averaging effect of sticking/sliding transition between tool and shear layer, is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.