Abstract

The present analysis is concerned with the effect of magnetic field inclination on transient MHD flow of Newtonian viscous fluid in a vertical microchannel with the consideration of Hall and ion slip currents as well as induced magnetic field effects. Obtained dimensional partial differential equation are rendered dimensionless by employing suitable parameters and thereafter solved numerically in MATLAB. Relevant actions of parameters on different flow features are depicted explicitly and also using Tables for various applicable parameters. Analysis in this direction is relevant in many MHD controlled applications. Results obtained from the present analysis shows that at the early stages of time and in the simultaneous occurrence of inclined magnetic field as well as Hall and ion slip currents, velocity and induced magnetic field behavior are found to be oscillatory all through the microchannel domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.