Abstract

In this study, the identification of thermoelastic mass diffusion was examined on a homogeneous isotropic microstretch thermoelastic diffusion (HIMTD) solid due to normal force on the surface of half space. In the framework of Cartesian symmetry, the components of displacement, stresses, temperature change, and microstretch as well as couple stress were investigated with and without microstretch and diffusion. The expression of the field functions was obtained using the Laplace and Fourier transforms. So as to estimate the nature of the components of displacement, stresses, temperature change, and microstretch as well as couple stress in the physical domain, an efficient approximate numerical inverse Laplace and Fourier transform technique and Romberg’s integration technique was adopted. It was meticulously considered and graphically illustrated how mass diffusion and microstretch affect thermoelastic deformation. Our objective was to address the inquiry regarding the impact of thermoelastic mass diffusion and microstretch on the field functions in the presence of a mass concentration source within the medium. Specifically, we aimed to investigate how these phenomena amplify the aforementioned effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call