Abstract
In this paper, silk fibroin hydrogel is used as a drug carrier for vincristine. To optimize drug delivery, a multi-physics model is proposed that couples the deformation and diffusion fields. We applied inverse analysis and general continuum mechanics to define material parameters and mechanical properties. To examine the mass transport and chemical behavior, an affinity-based diffusion and degradation of a drug-loaded polymer matrix is employed. Some experiments are carried out to examine the capability of the presented model. After preparing the vincristine loaded silk hydrogel syringes, they were injected into PBS and enzyme solutions to monitor the drug release rate for 40 days. Obtained results from the computational simulation and laboratory tests showed that the silk fibroin hydrogel was deswelled after about 40 days in enzyme solution. Degradation led to faster and higher doses of vincristine drug release in comparison to the case of PBS solution. Results revealed that more than 80% of the drug was released in the first 5 days in the enzyme solution, but in PBS solution only 10% of the drug was released during 40 days. The model predictions of deswelling behavior and drug release rate were in good agreement with those of experimental results. Therefore, it can be employed as a reliable tool for further predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.